

# Piezo- Hexapod

# FEINJUSTIERUNG UND AKTIVE DYNAMISCHE FEHLERKORREKTUR



#### P-915KWEF

- \_\_Belastbarkeit bis 1500 g
- \_i\_Kleinste Schrittweite 1 nm / 0,07 μrad
- \_\_ Stellwege bis 70 μm
- \_\_ Kapazitive Sensoren für dynamisches Scannen und präzises Positionieren

# Hochdynamisches Sechs- Achsen- System der Referenzklasse

Parallelkinematischer Aufbau für sechs Freiheitsgrade, dadurch wesentlich kompakter und steifer als Seriellkinematik- Systeme, Höhere Dynamik, keine bewegten Kabel: höhere Zuverlässigkeit, reduzierte Reibung. Piezoaktorische Direktantriebe mit hoher Steifigkeit und Resonanzfrequenz für dynamisches Positionieren. Ein leistungsfähiger Echtzeit- Digitalcontroller steuert die Antriebsachsen

#### **Kapazitive Positionssensoren**

Direkte absolute Positionserfassung mit Sub- Nanometer- Genauigkeit und hoher Bandbreite und Stabilität

#### Anwendungen

Dynamische Optimierung von Axialschlag, Exzentrizität und Ebenheit von Drehtischen. Schwingungsisolierung, Feinjustage



# **Spezifikationen**

| Vorläufige Daten                                                                                                                                                          | P-915KWEF                                                                                                   | Einheit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------|
| Aktive Achsen                                                                                                                                                             | $X, Y, Z, \theta_{X_i} \theta_{Y}, \theta_{Z}$                                                              | 200 N   |
| Bewegung und Positionieren                                                                                                                                                |                                                                                                             |         |
| Stellweg* X, Y, Z                                                                                                                                                         | ±35                                                                                                         | μm      |
| Stellweg* $\theta_{X}$ , $\theta_{Y}$ , $\theta_{Z}$                                                                                                                      | ±0,04                                                                                                       | ٥       |
| Kleinste Schrittweite X, Y, Z                                                                                                                                             | 1                                                                                                           | nm      |
| Kleinste Schrittweite $\boldsymbol{\theta}_{\boldsymbol{X}_{\!\scriptscriptstyle{A}}}  \boldsymbol{\theta}_{\boldsymbol{Y}}^{},  \boldsymbol{\theta}_{\boldsymbol{Z}}^{}$ | 0,07                                                                                                        | μrad    |
| Wiederholgenauigkeit X, Y                                                                                                                                                 | ±1                                                                                                          | nm      |
| Wiederholgenauigkeit Z                                                                                                                                                    | ±0,2                                                                                                        | nm      |
| Wiederholgenauigkeit $\boldsymbol{\theta}_{\mathbf{X}},\boldsymbol{\theta}_{\mathbf{Y}}$                                                                                  | ±0,03                                                                                                       | μrad    |
| Wiederholgenauigkeit $\boldsymbol{\theta}_{Z}$                                                                                                                            | ±0,05                                                                                                       | μrad    |
| Resonanzfrequenz X, Y                                                                                                                                                     | 900                                                                                                         | Hz      |
| Resonanzfrequenz X, Y, Z                                                                                                                                                  | 1300                                                                                                        | Hz      |
| Resonanzfrequenz $\theta_X$ , $\theta_Y$                                                                                                                                  | 1500                                                                                                        | Hz      |
| Resonanzfrequenz $\theta_{Z}$                                                                                                                                             | 1700                                                                                                        | Hz      |
| Mechanische Eigenschaften                                                                                                                                                 |                                                                                                             |         |
| Max. Belastbarkeit                                                                                                                                                        | 2,5                                                                                                         | kg      |
| Anschlüsse und Umgebung                                                                                                                                                   |                                                                                                             |         |
| Material                                                                                                                                                                  | Aluminium                                                                                                   |         |
| Abmessungen                                                                                                                                                               | Grundplatte Ø 135<br>Bewegte Plattform Ø 100<br>Freie Apertur Ø 50<br>Hexapod Höhe in mittlerer Position 50 | mm      |
| Masse                                                                                                                                                                     | 1,6                                                                                                         | kg      |
|                                                                                                                                                                           |                                                                                                             |         |

#### **Bestellinformation**

#### P-915KWEF

Piezo- Hexapod zur aktiven dynamischen Korrektur der Winkelfehler von Drehtischen

# **Technologie**

Piezoaktoren | Piezoelektrische Aktoren bieten Sub- Nanometer- Auflösung und kürzeste Ansprechzeiten und sind damit ideal für nanometergenaue Positionierung mit hoher Dynamik. Weiterlesen ... Hexapoden – Parallelkinematische Positioniersysteme | Ein Hexapod ist ein System für die Bewegung und Positionierung, Justierung und Verschiebung von Lasten in sechs Achsen im Raum, drei linearen und drei rotatorischen. Weiterlesen ...

WWW.PI.DE

Sonderausführungen auf Anfrage. Technische Daten werden bei 20  $\pm 3$  °C spezifiziert. \* Die maximalen Stellwege der einzelnen Koordinaten (X, Y, Z,  $\theta_X$ ,  $\theta_Y$ ,  $\theta_Z$ ) sind voneinander abhängig. Die genannten Daten geben den maximalen Stellweg einzelner Achsen an, bei denen alle anderen Achsen und der Pivotpunkt auf Referenzposition stehen.

